If it's not what You are looking for type in the equation solver your own equation and let us solve it.
9f^2-8f+1=0
a = 9; b = -8; c = +1;
Δ = b2-4ac
Δ = -82-4·9·1
Δ = 28
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{28}=\sqrt{4*7}=\sqrt{4}*\sqrt{7}=2\sqrt{7}$$f_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-2\sqrt{7}}{2*9}=\frac{8-2\sqrt{7}}{18} $$f_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+2\sqrt{7}}{2*9}=\frac{8+2\sqrt{7}}{18} $
| 3q=12.3 | | 104-w=168 | | -28=-6u+4(u-2) | | 6(x-2)-8x=26 | | 4z+1=-15 | | b+1=19.6 | | -3+17x=4(2x+3)+x | | y+-13=-6.31 | | 60=15+u | | 4+11x=5(11x+-7)+x | | 5n+13=-5 | | h+6.58=1.08 | | 4x+22=-36 | | 4^(x)-6(2^(x))-16=0 | | 5/9(8u+16)-5=45 | | v/6=-21 | | p9+17=19 | | 968=s+754 | | q/2+1=3 | | -8+10x=2(24x+6)+x | | z/24=-25 | | -6+2v=8 | | u6+2=16 | | f+701=636 | | 10x+5=5x+27 | | 21=33n | | 325=q-229 | | h/32=5 | | 28=u/5+3 | | 9+2(x–5)+5x=3–(x+7)+7x | | w16+6=11 | | 11=f/3+10 |